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Abstract
We have investigated the quantum transport behaviour of Cu nanowires created
by moving two macroscopic Cu wires into and out of contact. We have observed
quantum conductance with steps of both e2/h and 2e2/h. We conclude that
the spin degeneracy can be broken in non-magnetic Cu nanowires.

In the past couple of decades the subjects of nanowires and point contacts have been
investigated [1]. Quantum conduction has been seen in metallic nanowires [2] and in two-
dimensional electron gas devices [3]. The study of metallic nanowires has received more
attention recently because of the technological potential for creating nanoscale electronic
devices. There are a variety of methods which can be used to make nanowires; for example:
retracting a STM tip after it has hit a metallic surface [4], growth via an electrochemical
process [5] and tapping plain wires together [6].

The general structure of a nanowire can be seen in figure 1: that is, a narrow constriction
between two reservoirs. Most studies have reported that the conductance is quantized in units
of 2e2/h as expected from the Landauer formula [7–9] for non-magnetic materials:

G = G0

∑

i

Ti (1)

where G is the conductance, G0 = 2e2/h and Ti is the transmission coefficient for the i th
conduction channel which will be either open or closed (1 or 0). So if there are n conduction
channels open, G = 2ne2/h. The factor of 2 appears due to the spin degeneracy expected for
non-magnetic materials. Recent studies however [5, 10–12] have reported that in ferromagnetic
Fe and Ni nanocontacts this spin degeneracy is lifted, as expected.

In a low-dimensional structure such as a nanowire the spin-polarized electronic structure
and spin order can be different from the corresponding bulk quantities, depending on the
physical structure of the contact. It is therefore of interest to search for possible spin-dependent
effects in non-magnetic nanocontacts. In the present work we carried out an investigation into
quantum transport in Cu nanowires. The nanowires were made by tapping Cu wires together in
air at room temperature. The Cu wires were vibrated by mounting the wires in a light metallic
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Figure 1. An outline of the nanowire: a narrow metallic constriction (B) between two metallic
reservoirs (A and C). In the case of this experiment, all of these are made of Cu.
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Figure 2. An outline of the set-up for the experiment. The nanowires are made by vibrating
the macroscopic Cu wires by a speaker driven at about 10 Hz; the current is measured by a
transimpedance amplifier and an oscilloscope.

box on top of a speaker driven by a sinusoidal signal at about 10 Hz. The circuit used can be
seen in figure 2. A voltage source supplying in the region of 10 mV was connected to the wires
and the current flowing through the wires was measured via a current-to-voltage converter.
Both the current and the voltage were measured by a Tektronix TDS430A digital oscilloscope.
Nanowires were not created every time a contact was broken, so the data sets had to be filtered
to separate out those which demonstrated quantum conduction.

How the nanowires are formed is important in this case. Thin filaments extend from each
Cu wire because the wire is not smooth on an atomic scale. When the wires separate, these
filaments can remain in contact with the other wire and be stretched [13]. As the wires are
being stretched the filaments get thinner and quantum conductance can arise. As the wire
gets still thinner the various conduction channels will become closed, so the conductance will
fall in the familiar staircase curve. Towards the end of the process we will have a very small
number of atoms remaining in contact with the wires.

Figure 3 shows conductance against time curves; these are representative of the data
that we have obtained. The nanowires are made and broken on the millisecond timescale.
Quantum conduction is seen in making (e.g. figure 3(a)) and breaking contacts (e.g. figure 3(b)).
Figure 3(a) shows the G0 quantization of the conduction; this is as expected from equation (1).
Figure 3(b) reveals a different story: it also shows quantization, but in this case in units of G0/2.
Both behaviours of the quantization can be seen in making and breaking contacts. Usually the
contacts are quantized in steps of G0, but in 5–10% of the contacts which show quantization
the G0/2 quantization are seen. The quantization in units of G0/2 can also be seen in figure 4;
this is a conduction histogram built up from many different conduction curves. Above 2G0

the peaks are shifted away from integer and half-integer values of G0, due to changes in the
topography of the nanowire [14, 15].

The importance of these measurements is that the observation of G0/2 steps is not
consistent with equation (1) for a non-magnetic material. This is because in the derivation
of equation (1) we have assumed spin degeneracy which gives rise to the factor of 2 in G0.
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Figure 3. These are two representative curves. A shows the expected G0 step size. B shows half
the expected step size. The G0/2 steps are evidence of breaking of the spin degeneracy.
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Figure 4. A typical conductance histogram, showing the G0/2 steps.

Our experiments suggest that in this case this spin degeneracy has been lifted. A possible
explanation of the mechanism is that while Cu in the bulk state is paramagnetic and has
no overall spin, atomic Cu has a ground state of 2S1/2, i.e. atomic Cu has a net spin. In
the nanofilaments it is possible that the nearly isolated Cu atoms at the thinnest part of the
nanowire revert to the spin-polarized atomic state, acting therefore as ‘loose spins’ giving rise
to the G0/2 quantization observed. Such nearly isolated atoms can occur due to the low atomic
coordination of the Cu atoms at the thinnest part of the nanowire (area B in figure 1).

To summarize, we have observed quantum conduction in non-magneticCu nanowires with
both G0 and G0/2 steps. We interpret this as evidence for breaking of the spin degeneracy in Cu
nanowires from nearly isolated Cu atoms, which may revert to the spin-polarized atomic state
and act as ‘loose spins’. We hope that our finding of spin polarization effects in non-magnetic
nanowires will stimulate further theoretical and experimental work on spin-polarized quantum
transport.
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